#Борелевские множества
Борелевские множества
Тег

Борелевские множества

Борелевские множества
Найденo 15 статей
Термины
Характеристический функционал
Характеристи́ческий функциона́л, аналог понятия характеристической функции, используемый в бесконечномерном случае. Пусть – непустое множество, – векторное пространство определённых на действительных функций, – наименьшая -алгебра подмножеств , относительно которой измеримы все функции из . Характеристический функционал вероятностной меры , заданной на , определяется как комплекснозначный функционал на равенством
Математика
Термины
Проективное множество
Проекти́вное мно́жество, множество, которое может быть получено из борелевских множеств повторным применением операций проектирования и перехода к дополнению. Проективные множества классифицируются по классам, образующим проективную иерархию. Пусть  – бэровское пространство (гомеоморфное пространству иррациональных чисел). Множество принадлежит: 1) классу , если есть проекция борелевского множества пространства ; 2) классу ( есть -множество), если его дополнение есть -множество (); 3) классу ( есть -множество), если есть проекция -множества пространства , ; 4) классу , если принадлежит одновременно классам и , . Те же классы получаются заменой проекции непрерывным образом (множества того же пространства .
Математика
Термины
Совершенная мера
Соверше́нная ме́ра, понятие, введённое Б. В. Гнеденко и А. Н. Колмогоровым (Гнеденко. 1949) с целью «достижения полной гармонии между абстрактной теорией меры и теорией меры в метрических пространствах». Дальнейшее развитие теории обнаружило другие аспекты ценности этого понятия: с одной стороны, класс совершенных мер весьма широк, с другой – в рамках совершенных мер невозможен ряд неприятных технических осложнений, возможных в общей теории меры.
Математика
Научные теории, концепции, гипотезы, модели
Теория функций действительного переменного
Тео́рия фу́нкций действи́тельного переме́нного, область математического анализа, в которой изучаются вопросы представления и приближения функций, их локальные и глобальные свойства. Для современной теории функций действительного переменного характерно широкое применение теоретико-множественных методов наряду, естественно, с классическими. Обычно современную теорию функций действительного переменного условно делят на 3 части: 1) дескриптивная теория, 2) метрическая теория, 3) теория приближения.
Математика
1
2