Тег

Производные

Производные
Найденa 31 статья
Научные методы исследования
Метод вариации параметра
Ме́тод вариа́ции пара́метра, метод приближённого решения нелинейных (и линейных) функциональных и операторных уравнений в банаховых пространствах , , , а также для качественных исследований. Метод вариации параметра достаточно хорошо разработан и исследован для широкого класса задач. Первоначально он был предложен для систем алгебраических и трансцендентных уравнений, интегральных уравнений, дифференциальных уравнений обыкновенных и с частными производными, а затем для решения более общих нелинейных и операторных уравнений.
Математика
Научные проблемы, задачи
Краевая задача теории потенциала
Краева́я зада́ча тео́рии потенциа́ла, основная задача теории потенциала как классической, так и абстрактной. Поскольку классические ньютонов и логарифмические потенциалы удовлетворяют определённым дифференциальным уравнениям с частными производными эллиптического типа, а именно уравнению Лапласа в областях, свободных от порождающих эти потенциалы масс, и уравнению Пуассона в областях, занятых массами, к числу краевых задач теории потенциала относят в первую очередь краевые задачи для эллиптических уравнений и систем.
Математика
Термины
Дифференциал
Дифференциа́л, главная линейная часть приращения функции. Действительная функция действительного переменного называется дифференцируемой в точке , если она определена в некоторой окрестности этой точки и если существует такое число , что приращениепри условии, что точка лежит в упомянутой окрестности может быть представлено в видегде при . При этом обозначается через и называется дифференциалом функции в точке .
Математика
Научные теории, концепции, гипотезы, модели
Векторное исчисление
Ве́кторное исчисле́ние, раздел математики, в котором изучаются векторы евклидова пространства и операции над ними. Возникновение векторного исчисления связано с потребностями механики и физики. Основы векторного исчисления были заложены исследованиями У. Гамильтона и Г. Грассмана (1844–1850). Их идеи были использованы Дж. К. Максвеллом в его работах по электричеству и магнетизму. Современный вид векторному исчислению придал Дж. Гиббс. Значительный вклад в развитие векторного исчисления внёс М. В. Остроградский.
Математика
1
2
3
4