#Краевые задачиКраевые задачиИсследуйте Области знанийУ нас представлены тысячи статейТегКраевые задачиКраевые задачиНайденo 14 статейНаучные методы исследованияНаучные методы исследования Альтернирующий метод ШварцаАльтерни́рующий ме́тод Шва́рца, один из общих методов решения задачи Дирихле, позволяющий получить решение задачи Дирихле для дифференциального уравнения эллиптического типа в областях , представимых в виде объединения конечного числа областей , для которых решение задачи Дирихле уже известно. Работы Г. Шварца (1869; см. Schwarz. 1890) и ряд последующих работ других авторов были посвящены альтернирующему методу Шварца решения задачи Дирихле для уравнения Лапласа в плоских областях.Научные методы исследования Дифференциальное уравнение с частными производными (вариационные методы решения)Дифференциа́льное уравне́ние с ча́стными произво́дными (вариацио́нные ме́тоды реше́ния), методы решения краевых задач для дифференциальных уравнений с частными производными при помощи сведения этих задач (когда это возможно) к соответствующим образом подобранным вариационным задачам (т. е. к задачам на отыскание минимума или максимума некоторого функционала) и решения последних. Вариационные методы широко применяются как в теоретических исследованиях, так и в вопросах, связанных с нахождением приближённых решений уравнений.Научные методы исследования Метод ШаудераМе́тод Ша́удера, метод решения краевых задач для линейных равномерно эллиптических уравнений 2-го порядка, в основе которого лежат априорные оценки и метод продолжения по параметру. Оценки впервые были получены Ю. П. Шаудером.Научные проблемы, задачи Коэрцитивная краевая задачаКоэрцити́вная краева́я зада́ча, краевая задача, удовлетворяющая неравенству коэрцитивности. Иногда коэрцитивные краевые задачи для эллиптических уравнений называются эллиптическими краевыми задачами.Научные методы исследования Метод верхних и нижних функцийМе́тод ве́рхних и ни́жних фу́нкций, метод доказательства существования решения краевых задач для дифференциальных уравнений. Идея метода верхних и нижних функций для случая обыкновенных дифференциальных уравнений усматривается в работах Дж. Пеано, для случая задачи Дирихле и для уравнения Лапласа – в методе выметания А. Пуанкаре; первое полное изложение метода верхних и нижних функций для этого последнего случая дано О. Перроном.Научные проблемы, задачи Краевая задача теории потенциалаКраева́я зада́ча тео́рии потенциа́ла, основная задача теории потенциала как классической, так и абстрактной. Поскольку классические ньютонов и логарифмические потенциалы удовлетворяют определённым дифференциальным уравнениям с частными производными эллиптического типа, а именно уравнению Лапласа в областях, свободных от порождающих эти потенциалы масс, и уравнению Пуассона в областях, занятых массами, к числу краевых задач теории потенциала относят в первую очередь краевые задачи для эллиптических уравнений и систем.Термины Пространство СоболеваПростра́нство Со́болева, пространство функций , определённых на множестве (обычно открытом) и интегрируемых с -й степенью их модуля вместе со своими обобщёнными производными до порядка включительно . Пространство Соболева определено и впервые применено в теории краевых задач математической физики.Научные методы исследования Метод потенциаловМе́тод потенциа́лов, метод исследования краевых задач для уравнений математической физики путём сведения их к интегральным уравнениям, основанный на представлении решений этих задач в виде (обобщённых) потенциалов.Термины Финитная функцияФини́тная фу́нкция, функция, определённая в некоторой области пространства и имеющая принадлежащий к этой области компактный носитель. Точнее, пусть функция определена на области . Носителем называется замыкание множества точек , для которых отлично от нуля (). Таким образом, можно ещё сказать, что финитная функция в есть такая определённая на функция, что её носитель есть замкнутое ограниченное множество, отстоящее от границы области на расстояние, большее, чем , где достаточно мало.Научные законы, утверждения, уравнения Уравнения математической физикиУравне́ния математи́ческой фи́зики, дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегродифференциальные и т. д.), к которым приводит математический анализ физических явлений. Для полного описания динамики физического процесса, помимо уравнений, необходимо задать состояние процесса в некоторый фиксированный момент времени (начальные условия) и режим на границе среды, где протекает этот процесс (граничные условия). Начальные и граничные условия образуют краевые условия, а дифференциальные уравнения вместе с соответствующими краевыми условиями приводят к краевым задачам математической физики. 12