Тег

Краевые задачи

Краевые задачи
Найденo 14 статей
Научные методы исследования
Дифференциальное уравнение с частными производными (вариационные методы решения)
Дифференциа́льное уравне́ние с ча́стными произво́дными (вариацио́нные ме́тоды реше́ния), методы решения краевых задач для дифференциальных уравнений с частными производными при помощи сведения этих задач (когда это возможно) к соответствующим образом подобранным вариационным задачам (т. е. к задачам на отыскание минимума или максимума некоторого функционала) и решения последних. Вариационные методы широко применяются как в теоретических исследованиях, так и в вопросах, связанных с нахождением приближённых решений уравнений.
Математика
Научные методы исследования
Метод верхних и нижних функций
Ме́тод ве́рхних и ни́жних фу́нкций, метод доказательства существования решения краевых задач для дифференциальных уравнений. Идея метода верхних и нижних функций для случая обыкновенных дифференциальных уравнений усматривается в работах Дж. Пеано, для случая задачи Дирихле и для уравнения Лапласа – в методе выметания А. Пуанкаре; первое полное изложение метода верхних и нижних функций для этого последнего случая дано О. Перроном.
Математика
Научные проблемы, задачи
Краевая задача теории потенциала
Краева́я зада́ча тео́рии потенциа́ла, основная задача теории потенциала как классической, так и абстрактной. Поскольку классические ньютонов и логарифмические потенциалы удовлетворяют определённым дифференциальным уравнениям с частными производными эллиптического типа, а именно уравнению Лапласа в областях, свободных от порождающих эти потенциалы масс, и уравнению Пуассона в областях, занятых массами, к числу краевых задач теории потенциала относят в первую очередь краевые задачи для эллиптических уравнений и систем.
Математика
Термины
Финитная функция
Фини́тная фу́нкция, функция, определённая в некоторой области пространства и имеющая принадлежащий к этой области компактный носитель. Точнее, пусть функция определена на области . Носителем называется замыкание множества точек , для которых отлично от нуля (). Таким образом, можно ещё сказать, что финитная функция в есть такая определённая на функция, что её носитель есть замкнутое ограниченное множество, отстоящее от границы области на расстояние, большее, чем , где достаточно мало.
Математика
Научные законы, утверждения, уравнения
Уравнения математической физики
Уравне́ния математи́ческой фи́зики, дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегродифференциальные и т. д.), к которым приводит математический анализ физических явлений. Для полного описания динамики физического процесса, помимо уравнений, необходимо задать состояние процесса в некоторый фиксированный момент времени (начальные условия) и режим на границе среды, где протекает этот процесс (граничные условия). Начальные и граничные условия образуют краевые условия, а дифференциальные уравнения вместе с соответствующими краевыми условиями приводят к краевым задачам математической физики.
Математика
1
2