#Открытое множество
Открытое множество
Тег

Открытое множество

Открытое множество
Найденo 18 статей
Термины
Случайное поле
Случа́йное по́ле, случайная функция, заданная на множестве точек какого-то многомерного пространства. Случайные поля представляют собой важный тип случайных функций, часто встречающийся в различных приложениях. Примерами случайных полей, зависящих от трёх пространственных координат (а также и от времени ), могут служить, в частности, поля компонент скорости, давления и температуры турбулентного течения жидкости или газа.
Математика
Термины
Псевдодифференциальный оператор
Псевдодифференциа́льный опера́тор, оператор, действующий в функциональных пространствах на дифференцируемом многообразии и локально по определённым правилам записываемый с помощью некоторой функции, обычно называемой символом псевдодифференциального оператора и удовлетворяющей оценкам производных определённого типа, аналогичных оценкам производных полиномов, являющихся символами дифференциальных операторов. Теория псевдодифференциальных операторов служит основой для изучения интегральных операторов Фурье, играющих ту же роль в теории гиперболических уравнений, что и псевдодифференциальные операторы в теории эллиптических уравнений.
Математика
Термины
Дивизор
Диви́зор, обобщение понятия делителя элемента коммутативного кольца. Впервые (под названием «идеальный делитель») это понятие возникло в работах Э. Куммера об арифметике круговых полей. Теория дивизоров для коммутативного кольца с единицей без делителей нуля состоит в построении гомоморфизма из мультипликативной полугруппы ненулевых элементов в некоторую полугруппу с однозначным разложением на множители, элементы которой называются (целыми) дивизорами кольца .
Математика
Термины
Банахова алгебра
Ба́нахова а́лгебра, топологическая алгебра над полем комплексных чисел, топология которой определяется нормой, превращающей в банахово пространство, причём умножение элементов непрерывно по каждому из сомножителей. Банахова алгебра называется коммутативной, если для всех . Теория банаховых алгебр (в особенности коммутативных банаховых алгебр) имеет многочисленные приложения в различных областях функционального анализа и ряде других математических дисциплин.
Математика
Термины
Совершенное компактное расширение
Соверше́нное компа́ктное расшире́ние, расширение вполне регулярного пространства такое, что замыкание в границы любого открытого множества служит границей , где – максимально открытое в множество, для которого . Эквивалентные требования: а)  для любой пары непересекающихся открытых множеств , ; б) если замкнутое множество разбивает на открытые множества и , то замыкание в разбивает на и ; в) ни в одной из своих точек не разбивает локально.
Математика
1
2