Теорема Фробениуса (в алгебре)
Теоре́ма Фробе́ниуса, теорема, описывающая все конечномерные ассоциативные действительные алгебры без делителей нуля, доказана Ф. Г. Фробениусом (Frobenius. 1877). Теорема Фробениуса утверждает:
1) поле действительных чисел и поле комплексных чисел являются единственными конечномерными действительными ассоциативно-коммутативными алгебрами без делителей нуля;
2) тело кватернионов является единственной конечномерной действительной ассоциативной, но не коммутативной алгеброй без делителей нуля.
Существует также описание альтернативных конечномерных алгебр без делителей нуля:
3) алгебра Кэли является единственной конечномерной действительной альтернативной, но не ассоциативной алгеброй без делителей нуля.
Объединение этих трёх утверждений называется обобщённой теоремой Фробениуса. Все участвующие в формулировке теоремы алгебры оказываются алгебрами с однозначным делением и с единицей. Теорема Фробениуса не может быть обобщена на случай неальтернативных алгебр. Доказано, однако, что размерность любой конечномерной действительной алгебры без делителей нуля может принимать лишь значения, равные 1, 2, 4 или 8.