Переменный ток
Переме́нный ток, электрический ток, изменяющийся во времени по величине и/или направлению. В общем случае к переменному току относят различные виды импульсных, пульсирующих, периодических и квазипериодических токов. Если любые значения переменного тока повторяются через равные промежутки времени, то переменный ток называется периодическим. Периодом переменного тока называется наименьший промежуток времени, в котором силы тока в моменты времени и равны: . В технике под переменным током обычно подразумевают периодический (или близкий к периодическому) ток, в котором средние за период значения силы тока и напряжения равны нулю.
В том случае, когда переменный ток меняется по направлению, одно из направлений переменного тока принимают за положительное, а противоположное – за отрицательное. Соответственно, если направление переменного тока в некоторый момент времени совпадает с положительным направлением, то значение тока также считают положительным, а для противоположного направления тока – отрицательным. В простейшем случае мгновенное значение силы переменного тока изменяется во времени по гармоническому закону (гармонический, или синусоидальный, переменный ток):
,
где амплитуда тока, – начальная фаза, – круговая частота, – линейная частота. Гармонический ток возникает под действием синусоидального напряжения u той же частоты:
,
где – амплитуда напряжения, – начальная фаза.
Для характеристики переменного тока удобно использовать действующие (или эффективные) значения тока и напряжения, которые представляют собой среднеквадратичные (за период) значения силы тока и напряжения. Для синусоидальных токов действующие значения переменного тока и напряжения равны: и . Большая часть приборов, используемых для измерения периодических напряжений и токов, показывает действующие значения этих величин. Произведение действующих значений тока и напряжения определяет мощность, которая расходуется на выделение теплоты или на совершение механической работы в электрической цепи.
Важной характеристикой переменного тока является его частота f. В электроэнергетических системах Российской Федерации и большинства стран мира принята стандартная частота = 50 Гц, в США = 60 Гц. В технике связи применяются переменные токи высокой частоты (от 100 кГц до 30 ГГц). Для специальных целей в промышленности, медицине и других отраслях науки и техники используют переменный ток самых различных частот, а также импульсные токи.
В электротехнике (и частично в радиотехнике) обычно реализуются электрические цепи квазистационарных токов, при этом мгновенные значения переменного тока во всех участках цепи одинаковы. В многопроводных квазистационарных системах, предназначенных для передачи энергии, часто используют многофазные переменные токи – текущие по разным проводам токи с одинаковыми амплитудами, но разными фазами. Большинство цепей, содержащих сопротивления, ёмкости и индуктивности, работает в линейном режиме, когда справедлив принцип суперпозиции. При прохождении через такие цепи гармонические переменные токи не искажают своей формы, тогда как при наличии нелинейных элементов (например, сердечников в трансформаторах, нелинейных преобразователей, электронных ламп и т. п.) синусоидальные сигналы искажаются, обогащаясь высшими гармониками – сигналами на частотах, кратных основной частоте. Квазистационарные цепи с сосредоточенными параметрами могут быть составлены в виде определённой комбинации сопротивлений , индуктивностей и ёмкостей . Если в электрической цепи протекает установившийся квазистационарный электрический ток, то напряжения на сопротивлении , индуктивности и ёмкости определяются соотношениями:
, , .
Для синусоидального тока соответствующие амплитудные значения напряжений на данных элементах равны:
, , .
В нелинейных режимах величины , и являются функциями протекающего тока i; в линейных режимах они либо постоянны, либо зависят в явном виде от времени (параметрические системы).
При расчёте электрических цепей гармонических переменных токов удобно использовать комплексные амплитуды напряжения и тока, а также комплексные сопротивления (импеданс), определяемые на резистивных, индуктивных и ёмкостных участках цепи соответственно как
, и (здесь – мнимая единица).
Тогда квазистационарная линейная цепь (многополюсник) может быть рассчитана по правилам Кирхгофа, т. е. в этом случае применимы методы расчётов цепей постоянного тока.
С ростом частоты, когда размер электрической цепи становится сравнимым с длиной электромагнитной волны ( – скорость света), квазистационарное приближение перестаёт быть справедливым, и для получения распределения переменного тока необходимо применять уравнения Максвелла. При этом протекающий по проводящей среде переменный ток распределяется по сечению не равномерно, а преимущественно в поверхностном слое. Иногда такие токи называют быстропеременными и оперируют не суммарными (интегральными) силами тока, а их объёмными плотностями. Плотность быстропеременных токов включает потенциальную и вихревую компоненты. Последняя ответственна за возбуждение вихревых электромагнитных полей. В открытых (неэкранированных) системах именно с вихревыми переменными токами связано излучение электромагнитной энергии, что используется, например, в излучателях (антеннах), где путём подбора распределений быстропеременных токов создаются требуемые угловые распределения полей излучения (диаграммы направленности).