ИНФРАКРА́СНОЕ ИЗЛУЧЕ́НИЕ
-
Рубрика: Физика
-
-
Скопировать библиографическую ссылку:
ИНФРАКРА́СНОЕ ИЗЛУЧЕ́НИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн $λ$ от ок. 0,74 мкм до ок. 1–2 мм, т. е. излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. И. и. относится к оптич. излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область И. и. разделяют на ближнюю ($λ$=0,74–2,5 мкм), среднюю (2,5–50 мкм) и далёкую (50–2000 мкм). И. и. открыто У. Гершелем (1800) и независимо У. Волластоном (1802).
Спектры И. и. могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптич. свойства (коэффициенты пропускания, отражения, преломления и т. п.) веществ в И. и., как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Мн. вещества, прозрачные для видимого света, непрозрачны для И. и. определённых длин волн, и наоборот. Так, слой воды толщиной в неск. сантиметров непрозрачен для И. и. с $λ>$ 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из $\ce{Ge}$ и $\ce{Si}$, непрозрачные для видимого излучения, прозрачны для И. и. определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении И. и.).
Отражательная способность большинства металлов в И. и. значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (см. Металлооптика). Так, отражение поверхностей $\ce{Al,\, Au,\, Ag,\, Cu}$ И. и. с $λ$=10 мкм достигает 98%. Жидкие и твёрдые неметаллич. вещества обладают селективным (зависящим от длины волны) отражением И. и., положение максимумов которого зависит от их химич. состава.
Проходя через земную атмосферу, И. и. ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают И. и. и ослабляют его лишь в результате рассеяния, которое для И. и. значительно меньше, чем для видимого света. Молекулы $\ce{H_2O,\, CO_2,\, O_3}$ и др., присутствующие в атмосфере, селективно (избирательно) поглощают И. и., причём особенно сильно поглощают И. и. пары́ воды. Полосы поглощения $\ce{H_2O}$ наблюдаются во всей ИК-области спектра, а полосы $\ce{CO_2}$ – в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для И. и. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению И. и. в результате его рассеяния на этих частицах. При малых размерах частиц И. и. рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.
Источники инфракрасного излучения
Мощный естественный источник И. и. – Солнце, ок. 50% его излучения лежит в ИК-области. На И. и. приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрич. дуга и разл. газоразрядные лампы, все типы электрич. обогревателей помещений. В науч. исследованиях источниками И. и. служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (напр., длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров – 1,15 и 3,39 мкм, $\ce{CO_2}$-лазеров – 10,6 мкм).
Приёмники инфракрасного излучения
основаны на преобразовании энергии излучения в др. виды энергии, доступные для измерения. В тепловых приёмниках поглощённое И. и. вызывает повышение темп-ры термочувствительного элемента, которое и регистрируется. В фотоэлектрич. приёмниках поглощение И. и. приводит к появлению или изменению силы электрич. тока или напряжения. Фотоэлектрич. приёмники (в отличие от тепловых) селективны, т. е. чувствительны лишь к излучению определённой области спектра. Фоторегистрация И. и. осуществляется с помощью спец. фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.
Применение инфракрасного излучения
ИК-излучение широко применяют в науч. исследованиях и для решения разл. практич. задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. Вдалёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.
В промышленности И. и. используют для сушки и нагрева материалов и изделий, в быту – для обогрева помещений. На основе фотокатодов, чувствительных к И. и., созданы электронно-оптич. преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены разл. ночного видения приборы (бинокли, прицелы и т. п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их И. и. от спец. источников. При помощи высокочувствительных приёмников И. и. осуществляют теплопеленгацию объектов по их собственному И. и. и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, темп-ра которых выше темп-ры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в науч. исследованиях, а также для осуществления наземной и космич. связи, для лазерного зондирования атмосферы и т. д. И. и. используется для воспроизведения эталона метра.