Подпишитесь на наши новости
Вернуться к началу с статьи up
 

ДЕКА́РТОВА СИСТЕ́МА КООРДИНА́Т

  • рубрика

    Рубрика: Математика

  • родственные статьи
  • image description

    В книжной версии

    Том 8. Москва, 2007, стр. 445

  • image description

    Скопировать библиографическую ссылку:




ДЕКА́РТОВА СИСТЕ́МА КООРДИНА́Т, пря­мо­ли­ней­ная сис­те­ма ко­ор­ди­нат на плос­ко­сти или в про­стран­ст­ве, в ко­то­рой по­ло­же­ние точ­ки мо­жет быть оп­ре­де­ле­но как её про­ек­ции на фик­си­ро­ван­ные пря­мые, пе­ре­се­каю­щие­ся в од­ной точ­ке, на­зы­вае­мой на­ча­лом ко­ор­ди­нат. Эти про­ек­ции на­зы­ва­ют­ся ко­ор­ди­на­та­ми точ­ки, а пря­мые – ося­ми ко­ор­ди­нат.

Рис. 1.

В об­щем слу­чае на плос­ко­сти Д. с. к. (аф­фин­ная сис­те­ма ко­ор­ди­нат) за­да­ёт­ся точ­кой $O$ (на­ча­лом ко­ор­ди­нат) и упо­ря­до­чен­ной па­рой при­ло­жен­ных к ней не ле­жа­щих на од­ной пря­мой век­то­ров $e_1$ и $e_2$ (ба­зис­ных век­то­ров). Пря­мые, про­хо­дя­щие че­рез на­ча­ло ко­ор­ди­нат в на­прав­ле­нии ба­зис­ных век­то­ров, на­зы­ва­ют ося­ми ко­ор­ди­нат дан­ной Д. с. к. Пер­вая, оп­ре­де­ляе­мая век­то­ром $e_1$, на­зы­ва­ет­ся осью абс­цисс (или осью $Ox$), вто­рая – осью ор­ди­нат (или осью $Oy$). Са­ма Д. с. к. обо­зна­ча­ет­ся $Oe_1e_2$ или $Oxy$. Де­кар­то­вы­ми ко­ор­ди­на­та­ми точ­ки $M$ (рис. 1) в Д. с. к. $Oe_1e_2$ на­зы­ва­ет­ся упо­ря­до­чен­ная па­ра чи­сел ($x$, $y$), ко­то­рые яв­ля­ют­ся ко­эф­фи­ци­ен­та­ми раз­ло­же­ния век­то­ра $\overrightarrow {OM}$ по ба­зи­су $\{e_1,e_2\}$, т. е. $x$ и $y$ та­ко­вы, что $\overrightarrow{OM}=xe_1+ye_2$. Чис­ло $x$, $- \infty \lt x \lt \infty$, на­зы­ва­ет­ся абс­цис­сой, чис­ло $y$, $- \infty \lt y \lt \infty$, – ор­ди­на­той точ­ки $M$. Ес­ли ($x$$y$) – ко­ор­ди­на­ты точ­ки $M$, то пи­шут $M$($x$$y$).

Ес­ли на плос­ко­сти вве­де­ны две Д. с. к. $Oe_1e_2$ и $O'e'_1e'_2$ так, что век­то­ры ба­зи­са $\{e'_1,e'_2\}$ вы­ра­же­ны че­рез век­то­ры ба­зи­са $\{e_1,e_2\}$ фор­му­ла­ми $$e'_1=a_{11}e_1+a_{12}e_2,\quad e'_2=a_{21}e_1+a_{22}e_2$$ и точ­ка $O'$ име­ет в Д. с. к. $Oe_1e_2$ ко­ор­дина­ты $(x_0,y_0)$, то ко­ор­ди­на­ты $(x,y)$ точ­ки $M$ в Д. с. к. $Oe_1e_2$ и ко­ор­ди­на­ты $(x',y')$ той же точ­ки в Д. с. к. $O'e'_1e'_2$ свя­за­ны со­от­но­ше­ния­ми $$x=a_{11}x'+a_{21}y'+x_0,\quad y=a_{12}x'+a_{22}y'+y_0.$$

Д. с. к. на­зы­ва­ют пря­мо­уголь­ной, ес­ли ба­зис $\{e_1,e_2\}$ ор­то­нор­ми­ро­ван­ный, т. е. век­то­ры $e_1$ и $e_2$ вза­им­но пер­пен­ди­ку­ляр­ны и име­ют дли­ны, рав­ные еди­ни­це (век­то­ры $e_1$ и $e_2$ на­зы­ва­ют в этом слу­чае ор­та­ми). В пря­мо­уголь­ной Д. с. к. ко­ор­ди­на­ты $x$ и $y$ точ­ки $M$ суть ве­ли­чи­ны ор­то­го­наль­ных про­ек­ций точ­ки $M$ на оси $Ox$ и $Oy$ со­от­вет­ст­вен­но. В пря­мо­уголь­ной Д. с. к. $Oxy$ рас­стоя­ние ме­ж­ду точ­ка­ми $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ рав­но $\sqrt {(x_2-x_1)^2+(y_2-y_1)^2}.$.

Фор­му­лы пе­ре­хо­да от од­ной пря­мо­уголь­ной Д. с. к. $Oxy$ к дру­гой пря­мо­уголь­ной Д. с. к. $O'x'y'$, на­ча­ло ко­то­рой $O'$ Д. с. к. $Oxy$ есть $O'(x_0,y_0)$, име­ют вид $$x=x'\cos \alpha-y'\sin \alpha+x_0,\quad y=x'\sin \alpha+y'\cos \alpha+y_0$$ или $$x=x'\cos \alpha+y'\sin \alpha+x_0,\quad y=x'\sin \alpha-y'\cos \alpha+y_0.$$

Рис. 2.

В пер­вом слу­чае сис­те­ма $O'x'y'$об­ра­зу­ет­ся по­во­ро­том ба­зис­ных век­то­ров $e_1$, $e_2$ на угол $\alpha$ и по­сле­дую­щим пе­ре­но­сом на­ча­ла ко­ор­ди­нат $O$ в точ­ку $O'$ (рис. 2), а во вто­ром слу­чае – по­во­ро­том ба­зис­ных век­то­ров $e_1$, $e_2$ на угол $\alpha$, по­сле­дую­щим от­ра­же­ни­ем оси, со­дер­жа­щей век­тор $e_2$ от­но­си­тель­но пря­мой, не­су­щей век­тор $e_1$, и пе­ре­но­сом на­ча­ла ко­ор­ди­нат $O$ в точ­ку $O'$ (рис. 3).

Рис. 3.

Ино­гда ис­поль­зу­ют­ся ко­со­уголь­ные Д. с. к., от­ли­чаю­щие­ся от пря­мо­уголь­ной тем, что угол ме­ж­ду еди­нич­ны­ми ба­зис­ны­ми век­то­ра­ми не яв­ля­ет­ся пря­мым.

Рис. 4.

Ана­ло­гич­но оп­ре­де­ля­ет­ся об­щая Д. с. к. (аф­фин­ная сис­те­ма ко­ор­ди­нат) в про­стран­ст­ве: за­да­ёт­ся точ­ка $O$ – на­ча­ло ко­ор­ди­нат и упо­ря­до­чен­ная трой­ка при­ло­жен­ных к ней не ле­жа­щих в од­ной плос­ко­сти век­то­ров $e_1$, $e_2$, $e_3$ (ба­зис­ных век­то­ров). Как и в слу­чае плос­ко­сти, оп­ре­де­ля­ют­ся оси ко­ор­ди­нат – ось абс­цисс (ось $Ox$), ось ор­ди­нат (ось $Oy$) и ось ап­пли­кат (ось $Oz$) (рис. 4). Д. с. к. в про­стран­ст­ве обо­зна­ча­ет­ся $Oe_1e_2e_3$ (или $Oxyz$). Плос­ко­сти, про­хо­дя­щие че­рез па­ры осей ко­ор­ди­нат, на­зы­ва­ют­ся ко­ор­ди­нат­ны­ми плос­ко­стя­ми. Д. с. к. в про­стран­ст­ве на­зы­ва­ет­ся пра­вой, ес­ли по­во­рот от оси $Ox$ к оси $Oy$ со­вер­ша­ет­ся в на­прав­ле­нии, про­ти­во­по­лож­ном дви­же­нию ча­со­вой стрел­ки, ес­ли смот­реть на плос­кость $Oxy$ из к.-н. точ­ки по­ло­жи­тель­ной по­лу­оси $Oz$, в про­ти­во­по­лож­ном слу­чае Д. с. к. на­зы­ва­ет­ся ле­вой. Ес­ли ба­зис­ные век­то­ры $e_1$, $e_2$, $e_3$ име­ют дли­ны, рав­ные еди­ни­це, и по­пар­но пер­пен­ди­ку­ляр­ны, то Д. с. к. на­зы­ва­ет­ся пря­мо­уголь­ной. По­ло­же­ние од­ной пря­мо­уголь­ной Д. с. к. в про­стран­ст­ве от­но­ситель­но дру­гой пря­мо­уголь­ной Д. с. к. с той же ори­ен­та­ци­ей оп­ре­де­ля­ет­ся тре­мя эй­ле­ро­вы­ми уг­ла­ми.

Д. с. к. на­зва­на по име­ни Р. Де­кар­та, хо­тя в его соч. «Гео­мет­рия» (1637) рас­смат­ри­ва­лась ко­со­уголь­ная сис­те­ма ко­ор­ди­нат, в ко­то­рой ко­ор­ди­на­ты то­чек мог­ли быть толь­ко по­ло­жи­тель­ны­ми. В из­да­нии 1659–61 к «Гео­мет­рии» при­ло­же­на ра­бо­та голл. ма­те­ма­ти­ка И. Гуд­де, в ко­то­рой впер­вые до­пус­ка­ют­ся как по­ло­жи­тель­ные, так и от­ри­ца­тель­ные зна­че­ния ко­ор­ди­нат. Про­стран­ст­вен­ную Д. с. к. ввёл франц. ма­те­ма­тик Ф. Ла­ир (1679). В нач. 18 в. ус­та­но­ви­лись обо­зна­че­ния $x$, $y$, $z$ для де­кар­то­вых ко­ор­ди­нат.

Вернуться к началу