#Атомные процессы и явления в космосеАтомные процессы и явления в космосеИсследуйте Области знанийУ нас представлены тысячи статейТегАтомные процессы и явления в космосеАтомные процессы и явления в космосеНайденo 8 статейСтруктурные элементы материиСтруктурные элементы материи Космическая плазмаКосми́ческая пла́зма, плазма в космическом пространстве и населяющих его объектах. Возникла в первые микросекунды рождения Вселенной после Большого взрыва и ныне является наиболее распространённым состоянием вещества в природе, составляя 95 % от массы Вселенной (без учёта тёмной материи и тёмной энергии). По свойствам, зависящим от температуры и плотности вещества, и по направлениям исследования космическую плазму можно разделить на следующие виды: кварк-глюонная (ядерная), галактическая (плазма галактик и галактических ядер), звёздная (плазма звёзд и звёздных атмосфер), межпланетная и магнитосферная. Космическая плазма может находиться в равновесном и неравновесном состояниях, может быть идеальной и неидеальной. Космическая плазма удалённых объектов исследуется дистанционными спектральными методами с помощью оптических телескопов, радиотелескопов, внеатмосферных рентгеновских и гамма-телескопов. Прямые измерения параметров космической плазмы в пределах Солнечной системы проводятся с помощью приборов, установленных на ракетах и космических аппаратах.Галактические объекты Космическая пыльКосми́ческая пыль, твёрдые частицы с характерными размерами примерно от 0,001 до 1 мкм (и, возможно, до 100 мкм и более в межпланетной среде и протопланетных дисках), обнаруженные почти во всех астрономических объектах: от Солнечной системы до очень далёких галактик и квазаров. Характеристики пыли (концентрация частиц, химический состав, размер частиц и т. д.) значительно меняются от одного объекта к другому, даже для объектов одного типа. Частицы космической пыли в основном состоят из углеродистых веществ (аморфный углерод, графит) и магниево-железистых силикатов (оливины, пироксены). Наземные и космические дистанционные наблюдения космической пыли охватывают Солнечную систему (межпланетная, околопланетная и кометная пыль, пыль около Солнца), межзвёздную среду нашей Галактики (межзвёздная, околозвёздная и небулярная пыль) и других галактик (внегалактическая пыль), а также очень удалённые объекты (космологическая пыль).Галактические объекты Зоны ионизованного водородаЗо́ны ионизо́ванного водоро́да (зоны H II), участки межзвёздной среды с практически полной (обычно более 99,9 %) ионизацией основного химического элемента – водорода; широко распространённый тип межзвёздных туманностей. Наиболее яркие участки межзвёздной среды. Типичные, т. н. диффузные, зоны ионизованного водорода возникают в результате ионизации межзвёздного газа излучением молодой массивной звезды спектрального класса О или В. Размеры таких зон составляют 1–10 пк; концентрация газа в них 10–104 см–3; температура (7–12) ·103 К. Продолжительность жизни типичной зоны H II не превышает 106 лет. Звёзды ОВ-ассоциаций нередко создают вокруг себя т. н. гигантские зоны H II (размером 100–300 пк). Звёзды, расположенные вне межзвёздных облаков, создают протяжённые зоны H II низкой плотности Также в областях звездообразования возникают компактные и ультракомпактные зоны H II. Зоны ионизованного водорода излучают в основном в спектральных линиях водорода и запрещённых линиях других элементов в ультрафиолетовом (УФ), оптическом и инфракрасном диапазонах. Имеется и слабый непрерывный спектр, тянущийся от УФ- до радиодиапазона.Галактические объекты Межзвёздный газМежзвёздный газ, основной компонент межзвёздной среды, составляющий около 99 % её массы. Состоит из нейтральных атомов, молекул, атомарных и молекулярных ионов и свободных электронов. Распространённость химических элементов в межзвёздном газе примерно такая же, как в атмосфере Солнца и других звёзд: около 70 % по массе составляет водород, около 28 % – гелий. На все более тяжёлые элементы приходится не более нескольких процентов массы. Межзвёздный газ имеет очень низкую среднюю концентрацию и плотность т. е. и крайне неоднороден по температуре и плотности. В спиральных и неправильных галактиках основная часть межзвёздного газа сосредоточена в тонком слое (толщиной 150–800 пк) в дисках. Примерно половина массы межзвёздного газа находится в относительно холодных и плотных молекулярных облаках и облаках атомарного водорода. Около половины объёма слоя межзвёздного газа в диске Галактики занимает т. н. корональный газ Основная часть объёма гало Галактики занята горячим и очень разреженным, сильно ионизованным газом, в котором наблюдаются облака атомарного водорода, движущиеся преимущественно к галактической плоскости.Галактические объекты Межзвёздная пыльМежзвёздная пыль, твёрдые частицы характерного размера примерно от 0,001 до 1 мкм, находящиеся в межзвёздной среде; наиболее изученный компонент космической пыли. Межзвёздная пыль играет заметную роль в различных физических процессах, взаимодействуя с межзвёздным газом, электромагнитным излучением, космическими лучами и межзвёздными магнитными полями. В Галактике пространственные распределения межзвёздных пыли и газа коррелируют, а соотношение пыли и газа по массе в среднем составляет 0,7 %, изменяясь от ≈0,4 % до ≈1 %. Наблюдательные проявления межзвёздной пыли – межзвёздное поглощение света, межзвёздная поляризация излучения, рассеянное излучение, ИК-излучение в непрерывном спектре и ИК-полосах. Излучение, рассеянное межзвёздной пылью, проявляется в виде свечения некоторых туманностей или увеличенного свечения фона неба в области галактического экватора (диффузный галактический свет). ИК-излучение практически всех космических объектов представляет собой излучение нагретой пыли. Температура пылинок составляет 10–30 К в межзвёздных облаках, 50–200 К в областях H II и 100–1000 К в околозвёздных оболочках. Пылинки в основном состоят из C, O, Mg, Si и Fe, причём последние 3 элемента в межзвёздной среде почти полностью находятся в твёрдой фазе.Природные процессы, явления внутри небесных тел или в космическом пространстве Космические лучиКосми́ческие лучи́, потоки заряженных частиц высокой энергии, которые приходят к Земле со всех сторон из космического пространства и постоянно бомбардируют её атмосферу. В составе космических лучей (КЛ) преобладают ядра атомов водорода (протоны) и гелия (альфа-частицы) – около 85 и 10 % соответственно. В небольшом количестве присутствуют более тяжёлые ядра (вплоть до ядер с зарядовым числом ) – их доля не превышает примерно 5 %. Небольшую часть КЛ составляют электроны и позитроны (менее 1 %).Галактические объекты Планетарные туманностиПланета́рные тума́нности, огромные ионизованные газовые оболочки, окружающие горячую компактную звезду. Оболочка сбрасывается звездой на поздней стадии её эволюции (на стадии красного гиганта), после чего звезда превращается в белый карлик. Своё название планетарные туманности получили вследствие сходства с изображениями планет – светящимися дисками. Общие свойства структуры планетарных туманностей – симметрия и форма эллипса в первом приближении; максимум яркости в двух точках, симметричных относительно центральной звезды; понижение яркости вблизи центра. Средняя масса планетарных туманностей составляет 0,3 массы Солнца. Диапазон плотности планетарных туманностей значителен: от менее 102 до 105 электронов в 1 см3. Электронная температура газа лежит в интервале 8–17 тыс. К. Время жизни планетарной туманности – около 25 тыс. лет: туманность расширяется со скоростью 20–30 км/c, её плотность уменьшается, свечение ослабевает и, наконец, плотность туманности становится такой же, как плотность окружающей межзвёздной среды, – туманность исчезает, обогатив среду продуктами синтеза химических элементов.Внегалактические объекты Реликтовое излучениеРели́ктовое излуче́ние, космическое электромагнитное излучение, имеющее спектр абсолютно чёрного тела с температурой . Даёт основной вклад в интенсивность фонового излучения Вселенной в диапазоне сантиметровых, миллиметровых и субмиллиметровых длин волн; характеризуется высокой степенью изотропии (интенсивность одинакова во всех направлениях с точностью 10–5). Открытие реликтового излучения подтвердило теорию горячей Вселенной. Согласно этой теории, реликтовое излучение образовалось на ранней стадии эволюции Вселенной, когда произошла рекомбинация протонов и электронов с образованием электрически нейтральных атомов водорода, после чего электромагнитное излучение стало распространяться во Вселенной почти свободно. В ходе последующего расширения Вселенной температура излучения продолжала падать с сохранением планковского спектра. Реликтовое излучение обладает слабой анизотропией и частичной поляризацией, измерение которых позволяет определять значения космологических параметров и делать некоторые выводы о ранних стадиях эволюции Вселенной, в частности о свойствах первичных возмущений.